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Abstract

Global Positioning System (GPS) satellite orbits are modeled using Kolmogorov,
Arnold, Moser (KAM) tori. Precise Global Positioning System satellite locations are an-
alyzed using Fourier transforms to identify the three basis frequencies in an Earth Cen-
tered, Earth Fixed (ECEF) rotating reference frame. The three fundamental frequencies
are 1) the anomalistic frequency, 2) a combination of earth’s rotational frequency and the
nodal regression rate, and 3) the apsidial regression rate. A KAM tori model fit to the
satellite data could be used to predict future satellite locations. This model would allow
rapid determination with fewer computational requirements than the typical method of

integrating through an orbit.
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MODELING GPS SATELLITE ORBITS

UsinG KAM TORI

I. Introduction

Since the launch of Sputnik on October 4, 1957, the number of objects orbiting the
earth has increased. These objects include commercial and military satellites, spacecraft,
and debris. These objects must be tracked to reduce the risk of hypervelocity impacts.
Currently, the US Space Surveillance Network is tracking over 12,000 objects in Earth
orbit.

1.1 Motivation

The current methods for predicting the location of tracked satellites are based on
integrating Kepler’s equations and assuming small perturbations. These methods are
time and computer intensive. Another method used over short periods of time is to
estimate a satellite’s future trajectory by projecting the average of the recent trajectory
forward. The Global Positioning System (GPS) uses this method to provide more ac-
curate solutions for satellite location, although the predictions are valid for only a few
hours. Radar and telescopes are used to determine the precise position and to confirm
the predicted location of an object orbiting earth. If an object’s location changes due to
space weather effects or a maneuver, it must be reacquired by tracking systems and a
new orbit must be calculated for the new trajectory of the object. After a major event
such as the geomagnetic storm of March 1989, thousands of earth orbiting satellites can

be “lost”. It can take days to begin tracking all of the objects again.

A new method allowing direct prediction of a satellite’s location at any point in
time would allow tracking of additional objects without requiring additional resources.
It would also make a file with satellite location calculation parameters valid for a longer

period of time.



1.2 Background

Current methods for predicting satellite positions are computationally intensive and
take significant amounts of time. A method for directly calculating a satellite location

at any point in time would be beneficial.

1.3 Approach

The Kolmogorov, Arnold, Moser (KAM) theory states that if a trajectory only
has small perturbations to the Hamiltonian, then it will lie on a torus. This torus is
represented by a Fourier series with the same number of frequencies as the coordinates
of the system. A Fast Fourier Transform (FFT) is completed on orbit data to determine

if it has discrete frequencies, and if so, what those frequencies are.

1.4 Problem Statement

This thesis applies the KAM theorem to precise satellite data from the GPS satel-
lites. Showing that the orbits have a distinct set of frequencies illustrates that the orbits

lie on tori.

1.5 Results

Analysis shows that GPS satellites follow the KAM theory, having three distinct
frequencies. Some of the older satellites whose orbits have started to decay show semi-
stable frequency mappings. Further analysis is required to fit the coefficients to an orbital
model. These results could then be verified by calculating positions and comparing the

calculated positions with actual data.



II. Background

This chapter begins with a discussion of the technical characteristics of GPS relative to
the analysis that follows. Current orbit modeling capabilities are provided as background
to understand how changing the modeling method can increase the overall capability to
establish satellite locations. The KAM theorem, the basis for this thesis, is discussed
to understand the methods used for the analysis in Chapters III and IV. Finally, this
chapter provides a review of literature relative to space object applications of the KAM

theorem done by other researchers.

2.1 Global Positioning System

Initial operational capability for the GPS was obtained in December 1993. The
satellites are in semi-synchronous near circular orbits with a period of 11 hours and
58 minutes per orbit. The semi-major axis for each orbit is 26,560 km. The nominal
constellation configuration consists of at least 24 satellites with four satellites arranged in
each of six orbital planes. In 2007, 31 satellites were in operation for some part of the year
[Milcom Monitoring Post, 2007] [NGIA, 2008] . Each orbital plane has an inclination
of 55°. The Right Ascension of the Ascending Node (RAAN) for the orbital planes are
as follows A) 272.85° B) 332.85° C) 32.85° D) 92.85° E) 152.85° F) 212.85° [Misra and
Enge, 2001]. Figure 2.1 below was generated using Satellite Tool Kit (STK) version 8.1.
It shows the GPS satellites that were in orbit on 1 January 2007. This figure illustrates

the six orbital planes and the satellites spaced out within each of the planes.

The international standard time is coordinated universal time (UTC). Universal
time has days equal to the mean solar day and includes the irregularities in the Earth’s
rotation. UTC is maintained to within 0.9 seconds of universal time through the use of
leap seconds. GPS time was set to match UTC on 6 January 1980. GPS time does not
include leap seconds and therefore UTC is currently 14 seconds faster than GPS time.

Receivers must take this difference into account when they calculate their time in UTC.

All GPS satellites publish an almanac which provides the approximate ephemeris
data with orbital elements for all of the satellites. Receivers use this almanac data to

acquire satellites. Each individual satellite transmits it’s broadcast ephemeris data and
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Figure 2.1:  GPS Constellation, 1 January 2007

the current time. The receiver uses this information to calculate it’s position based on
knowledge of the satellite’s position and the time elapsed from transmission until the
message is received. A given ephemeris file is valid for four hours and overlaps with the
file before it by two hours. Each of the ephemeris files provides essentially the average
osculating orbital elements over the time period for which it is valid. Currently all the
ephemeris files for a satellite during a given day are uploaded once a day. The ephemeris
files for all of the satellites are available through the National Geodetic Survey (NGS)
INGS, Aug 2007] and are maintained by the International GNSS Service (IGS). IGS
coordinates the tracking of Global Navigation Satellite System (GNSS) satellites using
a global network of antennas and receivers. This information is used to calculate GPS
final (precise) orbits. The final orbits are published weekly and are available on the web.
The final GPS satellite orbit data, published approximately 13 days after a given week
is over, has an accuracy of < 5 cm. Broadcast ephemeris data for GPS satellites has an

accuracy of ~160 cm [IGS, 2005].

Each satellite has a unique Pseudo Random Number (PRN). This number is the

method that receivers use to differentiate between satellites. There are 32 possible PRNs.



When the constellation was initially created the PRNs corresponded to the Satellite
Vehicle Number (SVN), but now that satellites have been retired and new satellites have
been launched, PRNs do not necessarily correspond to satellite numbers. The PRNs are
provided in the GPS precise orbit data and the broadcast ephemeris data to identify
satellites. Throughout this thesis the PRN numbers are used for reference rather than
satellite numbers. Table 2.1 shows all of the satellites that were in continuous operation,
without any station keeping maneuvers, during 2007. These were chosen to allow six
months of final orbit data for analysis followed by six months of orbit data for comparison
of predicted location values against actual positions. The precise orbit data provided by

IGS gives the location of each satellite at 15-minute time intervals.

2.2 Orbit Modeling

Current orbit modeling typically uses numerical integration. This method can be
time consuming. To predict the future location of a satellite one must determine the orbit
at every point leading up to the point of interest. In the past, this calculation could take
almost as long as for the satellite to move through the orbit to the point of interest. With
the advent of more powerful computers, the relative computational intensity and time to
do a numerical integration has decreased. Even with powerful computers, the cumulative
computational requirements for predicting and tracking several objects simultaneously

remain large.

Currently the US Space Surveillance Network is tracking over 12,000 objects in
Earth orbit [NASA, 2008]. Figure 2.2 below shows the increased number of Earth orbiting
objects. The sharp increase in debris during 2007 is a result of the destruction of Fengyun-
1C on 11 January 2007 by the People’s Republic of China as a test of an anti-satellite
system. All objects orbiting Earth must be tracked to reduce the risk of hypervelocity
impacts. In 1983, a small paint chip damaged the windshield on the Challenger shuttle,
thus demonstrating the damaging power of small items in space [OTA, 1990]. Militarily,
another reason to track satellites is for situational awareness, especially in the case of

spy satellites flying over sensitive areas.



Table 2.1:  GPS Satellites in Operation, 2007

PRN | Plane | Launch Date | SSC#

25 A5 23 Feb 1992 | 21890
26 F2 07 Jul 1992 | 22014
27 A4 09 Sep 1992 | 22108
01 A6 22 Nov 1992 | 22231
09 Al 26 Jun 1993 | 22700
05 B4 30 Aug 1993 | 22779
04 D4 26 Oct 1993 | 22877
06 C1 11 Mar 1994 | 23027
03 C2 28 Mar 1996 | 23833
30 B2 12 Sep 1996 | 24320
13 F3 23 Jul 1997 | 24876
08 A3 06 Nov 1997 | 25030
11 D2 07 Oct 1999 | 25933
20 E1 11 May 2000 | 26360
28 B3 16 Jul 2000 | 26407
14 F1 10 Nov 2000 | 26605
18 E4 30 Jan 2001 | 26690
16 B1 29 Jan 2003 | 27663
21 D3 31 Mar 2003 | 27704
22 E2 21 Dec 2003 | 28129
19 C3 20 Mar 2004 | 28190
23 F4 23 Jun 2004 | 28361
02 D1 06 Nov 2004 | 28474
17 C4 26 Sep 2005 | 28874
31 A2 25 Sep 2006 | 29486
12 B5 17 Nov 2006 | 29601
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Figure 2.2:  Earth Orbiting Objects, January 2008

During a geomagnetic storm, low earth orbiting satellite drag rapidly increases
due to thermospheric heating [Campbell, 2003]. This change can significantly alter a
satellite’s orbit to the point where automated tracking software loses them. Increased
drag causes a satellite to lose altitude, which results in a higher velocity. This was the case
with the geomagnetic storm on 13-14 March 1989. Figure 2.3 below shows the increased
number of lost satellites following the storm relative to the geomagnetic index. It took the
North American Defense Command (NORAD) several days to reacquire the thousands
of objects that were lost. During the Halloween space weather storms of 2003, Air Force
Space Command used satellite drag models to correct for orbital changes. These models
were based on the advanced warning geomagnetic and solar activities indices [NOAA,

2004] .

2.3 Satellite Dynamics

The motion of satellites, for the application of KAM theory, must be considered
in the Earth Centered Earth Fixed (ECEF) rotating reference frame. It is in this frame
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Figure 2.3:  March 1989 Geomagnetic Storm

that the Earth’s geopotential gravity field is constant with only small smooth variations
as an object moves around the Earth. The ECEF frame is a Cartesian coordinate system
where the axes are defined with the x and y axes in the plane of the equator and the
x axis points through the prime meridian. The z axis points out of the North pole to
complete the right handed coordinate system. The inertial velocity components of a
satellite may be written in the ECEF reference frame as shown by Equation 2.1. In this
equation the inertial velocity components have been converted to the rotating reference
frame. The positions in the ECEF frame are given by x, y, z and the inertial velocities

are given by X, y, z. wg is the angular velocity of the Earth.

T — wgy
V= y + wgx (2.1)
z

The kinetic energy of the satellite per unit mass is given by Equation 2.2
N Y 2 . 2, 2
T = (5~ wop)’ + (3 + wor)” + 2) (2.2

The momenta p; are defined as p; = §T'/d¢; where g; are the generalized coordinates
and ¢; are the time derivatives of these coordinates. In this formulation the ¢;s are given

by the components of the velocity in Equation 2.1. Equations 2.3-2.5 give the momenta



for the earth orbiting satellite in the ECEF frame.

Do =4 — Wy (2.3)
Dy = Y+ wer (2-4>
P, =2 (2.5)

The potential energy per unit mass of the satellite is given by Equation 2.6. This

is the expansion of the geopotential in spherical harmonics | Wiesel, 2003].

V= —g Z Z(RL@)"P,T(SM(S) * (Crmecosm + Spmsinm) (2.6)

n=1m=1

In this equation, p is the Earth’s gravitational parameter and Rg is the radius of
the earth. The functions P are the associated Legendre polynomials. C,,, and S,,, are
coefficients that specify the gravitational field. Several models are available with these
values. For the analysis in this thesis, the harmonic terms for the geomagnetic field of
the earth are taken from National Aeronautics and Space Administration’s (NASA)’s
Earth Gravitational Model (EGM) 96. For the numerical integration, EGM 96 was used
to order and degree nm < 20. Figure 2.4 [NASA, 1998] depicts the EGM 96. The
full EGM 96 is available in tabular format on the web [NASA, 1998]. In Equation 2.6
the radius r, geocentric latitude 0 and east longitude A are found using the following

equations:

1 o
H= é(pi—i—p;—i—pﬁ)—i—w(ypz—xpy)—g Z (=) " P (sind)*(CrmcosmA+S,,,, sinm\)

(2.7)



Figure 2.4:  Earth Gravitational Model 96 Geoid

The Hamiltonian is independent of time, which means that it must be a constant

of the motion.

2.4 Kolomogorov, Arnold, Moser Tori

Kolmogorov [Kolmogorov, 1954], Arnold[Arnold, 1963], and Moser [Moser, 1962]
developed theories that together form the KAM theorem. The necessary conditions for
the KAM theorem to apply are that there are only small, smooth perturbations to the
Hamiltonian. A Hamiltonian that follows KAM theory can be represented by a torus
with discrete frequencies the number of which is equivalent to the number of coordinates
of the system. An N-dimensional system is represented in 2N-dimensional phase space.
Figure 2.5 depicts a three dimensional torus. A trajectory lying on a torus will have
quasiperiodic motion and remain on the torus in the future. Kolmogorov’s and Arnold’s
works were published in Russian and therefore unavailable for review. Several other

authors have, however, provided summaries of their theories.

10



Figure 2.5:  Representation of a 3 Dimensional Torus

Kolmogorov stated that for a nearly integrable Hamiltonian in phase space M :=
V x T?, the Hamiltonian function is given by 2.8. In the phase space definition d is the

number of dimensions.

Ho(I, ) == h(I) +f(I,¢) (2.8)

where h and f are real-analytic functions, € is a small real parameter, and variables

I and ¢ are sympletic action-angle variables.

Kolmogorov’s theorem states that: In any neighborhood of any torus Iy x Ty C M
such that
deth(Iy) := det O°h (Ip) #0 (2.9)
0/ 01,01, o) 1 ’ '
i,5=1,...,
there exists a positive measure set of phase points belonging to analytic KAM tori for H.,
provided ¢ is small enough. [Celletti, 2006] The measure is the 2d-dimensional Liouville

measure in phase space.

In a Hamiltonian where h, as given by Kolmogorov, does not depend on all of
the action angles, the system is properly degenerate. In this case, KAM tori cannot
be identified (and may not exist) without additional information about the perturba-
tion, f, of the Hamiltonian. Arnold focused on this special case by attempting to apply
his theorem to the planetary many body problem. Arnold’s formulation begins similar
to Kolmogorov’s, with M designating the phase space and the Hamiltonian given by

H.(I,¢,p,q) := h(I)+<f(I,p,p,q). The average power of f over the "fast angles” ¢ is

11



given by

fI,p,q) = Adf(f,%p,Q)(QdTw)d (2.10)

Arnold’s theorem states: Assume that f is of the form

i 1 p;+q;
Fe D)+ 3 Q0+ 24T+ 0 gy = BED (2.11)

=1

where A is a symmetric (m x m)-matriz and lim, g —olod|/|(p, q)|* = 0. Assume, also,

that Iy € V is such that

deth” (1) # 0, (2.12)

> Q(Io)k; #0, Vk € Z™ with0 < ) |k <6, (2.13)
Jj=1 Jj=1

det A(Iy) # 0. (2.14)

Then, in any neighborhood of Iy x T x (0,0) C M there exists a positive measure set of
phase points belonging to analytic KAM tori for H., provided € is small enough. [Celletti,
2006]

Kolmogorov’s theorem focused on analytic Hamiltonians with near integrable dif-
ferential equations. For these he showed the existence of quasiperiodic solutions. Moser
formulated his problem in a geometric fashion in an attempt to verify Kolmogorov’s the-
orem. Moser defines the mapping (including perturbation of a twist mapping), assuming

F and G are small with period 27 for 6, as

0, =0+ «a(r)+ F(r,0) (2.15)
ry=r+G(r,0) (2.16)

The second assumption is that every closed curve which is near a circle (r =const) has

r = f(0) = f(0+2m) and with f/(#) small, the closed curve and it’s image curve intersect.

12



Moser’s theorem states: For a given € > 0 and a given integer s > 1 the mapping

has a closed invariant curve

0=0+p) (2.17)

r=ro+q(d) (2.18)

where the functions p,q are functions of period 27 with s continuous derivatives satisfying

Ipls + lals <€ (2.19)

under the following hypotheses: Assume for the mapping that every closed curve near a

circle and its image curve intersect. Assume further b —a > 1 and

Cal < da(r)

S < ¢ (2.20)

with some constant co > 1. Finally construct a positive number &y = dy(e, s, (co)) and an
integer 1=l(s) with which it is required that F,G have continuous derivatives up to order

[ and satisfy the inequalities

|F'lo + |Glo < do (2.21)

ali + [Fli + |Gl < e (2.22)
Moreover, the mapping induced on the curve is given by
0) =6+ a(ro) (2.23)
[Moser, 1962]

2.5 FEarth-Satellite KAM

The basis frequencies of the tori in the ECEF frame are given in Equations 2.24 -
2.26 [Wiesel, 2007]. All of these fundamental frequencies can be approximated in terms

of the classical orbital elements and are listed in order of size with w; being the largest

13



and w3z being the smallest of the frequencies. The first frequency is the anomalistic

wl_”as {1—2a2(1_62)3/2(2sm i—1) (2.24)

The second frequency is a combination of the earth’s rotational frequency and the nodal

frequency.

regression rate.

NI

Wy = Wy + m cos” 1 (225)

The final frequency is the apsidial regression rate.

3\/EM)J2R39 5 . 9.
Wy = m(§ sin“i — 2) (2.26)
Where R is the radius of the Earth, p is the Earth gravitational parameter, J, is the J,
term of the geopotential, wg is the Earth rotation frequency, e is the orbit eccentricity,

a is the orbit semi-major axis, and 7 is the orbit inclination. All the frequency equations

are independent of the right ascension of a satellite.

The motion of the satellite in the z axis of the ECEF coordinate frame is indepen-
dent of the Earth’s rotation and is therefore given by multiples of the mean motion. The

mean motion of a satellite is given by Equation 2.27.

n=/5 (2.27)

The actual frequencies are identified by doing FFT's on the satellite position in each
coordinate of the ECEF frame. The equation for identifying the position of a satellite
is based on the frequencies identified and is given by Equation 2.28. ' and S are the

Fourier series coeflicients.

X = Z Cijrcos((iwy + Jwe + kws)t) + Sijpsin((iwy + jws + kws)t) (2.28)
ijk

Where X is the state matrix of a satellite at time, ¢, given by X = {x y z}T
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The period for a satellite to travel the entire torus is based on the time for the

smallest frequency to traverse a circle. Equation 2.29 gives the period of the torus.

_27T

T (2.29)

w3

2.6 Laskar Frequency Algorithm

Laskar [Laskar, 1999] |[Laskar, 2003] provides the the algorithm for an accelerated
Fourier transform to identify the frequencies of a quasiperiodic function more precisely
than with a simple FFT. For a quasiperiodic function evaluated over the interval [—7 :
7] an ordinary FFT assumes the function is periodic with a period of 27, which is
not typically the case. Laskar’s Numerical Algorithm of the Fundamental Frequency
(NAFF) determines the frequencies without this limitation. For an ordinary FFT the
accuracy of the solution for the frequencies is proportional to 1/7. The NAFF accuracy
is proportional to 1/72. This is further refined using a Hanning weighting to produce
the frequencies of a KAM solution with accuracies proportional to 1/7%. The Hanning

weighting function is given by Equation 2.30.
Tt
x(t/7) =1+ cos <—) (2.30)
T

The NAFF given by Laskar is to find the maximum amplitudes in Equation 2.31

through an iterative method.

ow) =5 [ e e/ 2.31)

Using approximate frequencies, identified through independent numerical integra-
tion and an ordinary FF'T, the peak values in Equation 2.31 can be converged upon in

a moderate number of iterations.
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2.7 KAM Theory Applied

McGill and Binney show that most orbits are approximately quasiperiodic and
they can be represented by a torus in phase-space. A method for doing linear least
squares fitting to identify the orbital torus is discussed [McGill and Binney, 1990]. A toy
Hamiltonian, Hy, is represented by an analytic tori. The target tori is the Hamiltonian
of interest, H.. Based on perturbation theory, the distortion of the toy tori into the
target tori uses a generating function and a canonical transformation. The technique
for identifying the orbital torus requires that a toy Hamiltonian is available that can be

mapped to the target torus.

Beginning with Arnold’s attempt to apply KAM theory to the restricted three-
body problem, astronomers have worked to apply the theory to celestial mechanics.
Arnold started by posing the question, “Do there exist, in the n-body problem, a set of
initial conditions having positive measure such that, if the initial position and velocities
of the bodies belong to this set, then the distances of the bodies from each other will
remain perpetually bounded?” [Celletti, 2006] This is true in the special case of the
restricted, planar, three-body problem (RPC3BP). Initial general attempts to apply
KAM theory to the Solar System provided poor results because the parameter e, the
mass ratio, needed to be small. Celletti and others have completed several applications of
the KAM theory. In the context of the RPC3BP the Sun-Jupiter-Ceres [Celletti, 1998],
Sun-Jupiter-Saturn [Laskar, 2003], and the Sun-Jupiter-Victoria [Celletti et al., 2004]
[Celletti and Chierchia, 2005 systems were analyzed. The numerical studies completed
on the Sun-Jupiter-Victoria truncated model show results very close to those obtained
using the complete perturbation function [Celletti, 2006]. Moser’s theorem provides an
estimate for the mass ratio of two bodies of less than 107%°; which is the desired value
for the two primary bodies. In the Sun-Jupiter case € is only 1073, but with the use of

computers, it is possible to obtain a result close to reality [Celletti et al., 2004].
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ITI. Method

This work is based on the KAM theorem. It is applied to precise GPS data to verify the

existence of discrete frequencies. FFTs were used to identify the frequencies.

3.1 Data Gathering

GPS final precise files were downloaded from the NASA server [IGS, 2007] using
a shell script on an Ubuntu server version 7.10. The broadcast ephemeris data was
downloaded in a similar manner. GPS data is provided based on the GPS week number.
A calender is available on the web for easy identification of the GPS weeks relative to a
standard calendar [NGS, 2007]. All GPS data is given with positions in the ECEF frame
and time given by GPS time.

GPS final orbit files are in sp3 format [Hilla, 2007]. The first 22 lines of code

contain comments and the remainder of the file is in the form seen in Figure 3.1.

* 2007 1 1 O O 0.00000000

PGO1 -13611.975739 13373.070070 -18238.588923 98.711251 11 10 10 172
PGO02 22725.438511 -13205.010044 2507.995439 69.157928 13 10 13 201
PGO3 =-11737.674285 17133.489073 16173.165844 518.252288 11 12 14 191
PGO4 24622.216474 -3778.903342 -9780.051158 350.987566 9 14 10 184
PGOS -5181.092119 -18497.996064 -18635.867925 454.598118 11 &8 9 164
PGO6 -7908.679569 -22552.665443 11714.643028 461.111422 9 10 8 158
PGO7 -11359.909279 -18490.081281 15593.644644 459.082775 10 10 8 167
PGO8 19893.750080 4060.771479 17228.643849 -91.699044 13 13 11 201
PGO9 8353.931698 -18401.652165 -17688.405375 51.181664 14 9 8 215
PG10 13807.306063 -7970.868750 21196.376445 95.217252 13 11 10 182
PG11l -4399.422547 19829.470893 -17072.576710 1.823003 12 9 11 167
PGl2 -4081.740525 -18394.893078 -18630.298051 -72.851199 13 8 11 187
PG13 7105.535401 21288.037015 14151.698360 128.126912 12 9 9 164
PGl4 -14152.692634 -49465.479069 -21949.037533 3.325293 13 13 8 186
PG1S =-21023.797955 =3760.996784 15932.503266 352.229108 12 12 14 216
PG1l6 -17910.100936 3961.317154 19331.708991 107.692958 9 13 10 178
PG17 14850.925170 4411.000084 -21590.672150 84.177813 11 14 11 170
PG18 -19503.682845 -17875.147550 3986.097722 -253.769575 10 10 12 163
PG19 -8614.175325 23914.476412 7634.534549 51.286456 9 4 10 174
PG20 6873.011101 19115.540361 -17223.146829 -21.882901 12 9 9 181
PG21 -15090.628398 -9258.926179 20042.260790 66.977665 10 10 7 179
PG22 -23121.567838 -10413.946351 -7770.365432 159.323004 11 12 11 174
PG23 729.451999 26173.678549 3712.159995 144.461494 12 8 8 150
PG24 17791.343107 -16393.380090 11541.401896 64.771961 11 & 10 183
PG25 -23840.456545 10870.015685 -4452.652542 394.051853 12 11 10 195
PG26 8025.278328 -23335.770084 8593.809269 -73.036644 9 & 9 162
PG27 11963.093357 10714.109648 21829.746143 86.166055 14 13 11 200
PG28 22980.656636 13117.231243 -3626.921139 10.642863 12 13 12 186
PG29 10156.502411 -20570.051777 13313.071492 292.094773 20 18 17 155
PG30 -15406.742034 -18903.114013 -10960.438838 21.199089 8 10 10 155
PG31 -24705.789337 6846.874604 -6834.813768 -11.394328 12 9 10 195

Figure 3.1:
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In a final orbit file the epoch identification lines have an asterisk in the first col-
umn. The remaining entries on this line are as follows: year, month, day of month,
hour, minutes, seconds. The position and clock record for satellites are on lines begin-
ning with PG. Columns three and four are the PRN identifying a given satellite. The
remaining entries are in order: the x, y, and z coordinates in km, the clock given in
microseconds, the standard deviations for each of the components x, y, z, and the clock.
The analysis completed for this thesis used only the epoch header information, the PRN

and coordinates of each satellite.

GPS broadcast ephemeris files are in RINEX format [Gurtner, 2002]. The first 3
lines of code contain comments and the remainder of the file is in the form seen in Figure

3.2.

'™
(=]
S ]

1 2 0 O 0.0 0.989157706499E-04 0.23874235921SE-11 0.000000000000E+00
0.180000000000E+02-0.695000000000E+02 0.402766776853E-08-0.361491914275E+00
-0.359117984772E-05 0.671335251536E-02 0.888481736183E-06 0.515372728157E+04
0.172800000000E+06-0.465661287308E-07-0.143951461866E+01 0.745058059692E-08
0.989187963695E+00 0.376343750000E+03-0.176594710576E+01-0.823320008869E-08

-0.242152943785E-09 0.000000000000E+00 0.140800000000E+04 0.000000000000E+00
0.280000000000E+01 0.000000000000E+00-0.325962901115E-08 0.180000000000E+02
0.171150000000E+06 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00

0
0
0
07 1 2 0 0 0.0 0.694547779858E-04 0.352429196937E-11 0.000000000000E+00
0.120000000000E+03 0.715312500000E+02 0.468590947265E-08 0.858699980781E+00

0

0

0

0

~n

.355765223503E-05 0.885681062937E-02 0.111702829599E-04 0.515376655006E+04
.167638063431E-07 0.270030433369E+01-0.210478901863E-06
.158312500000E+03 0.218769731207E+01-0.790532928870E-08
.495734935064E-09 0.100000000000E+01 0.140800000000E+04 0.000000000000E+00
0.280000000000E+01 0.000000000000E+00-0.172294676304E-07 0.376000000000E+03
.165618000000E+06 0.400000000000E+01 0.000000000000E+00 0.000000000000E+00

0

0

0.172800000000E+06
0.948047556180E+00
0
0
0

Figure 3.2:  Broadcast Ephemeris, RINEX format

The file is in groups of eight lines of data per satellite. The first line contains
the PRN number of the satellite, the year, month, day, hours, minutes, and second (of
the epoch for which the parameters apply), clock offset, rate, and acceleration. The
second line contains the age of the ephemeris entry, radius correction, correction to the
mean motion, and mean anomaly. The third line contains a correction to the argument
of latitude, eccentricity, a second argument of latitude correction and the square root
of the semi-major axis. The fourth line has the time of ephemeris, correction to the
inclination, longitude of the ascending node, and a second correction to the inclination.
The fifth line contains the inclination, a radius correction, argument of perigee, and the
time derivative of the longitude of the ascending node. The first parameter in the sixth

line is the time derivative of the inclination. None of the remaining values on the sixth
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line or any values in lines seven and eight are needed to calculate the satellite dynamics

at a point in time.

The final orbit files and the broadcast ephemeris files were consolidated into their
own respective data files, eliminating the comments to reduce processing time. GPS
satellites are designated by PRN number. Matlab code was written to step through
the final orbit file, extracting the x, y, and z positions and times for the input set
of satellites identified by their PRN. A similar code was written to step through the
broadcast ephemeris file to gather the values required to calculate the satellite velocity
at a given time. A discussion of the method to calculate the velocities is in Section 3.3.

The complete code is in Appendix C for reference.

3.2 Position Frequencies

An estimate of the mass ratio ¢ for a GPS satellite and Earth gives a value of
3.348e-22. This uses an approximate GPS satellite weight of 2e3 kg [AFSPC, 2007] and
the mass of the Earth as 5.9742e24 kg. This calculation does not give as small a value
as desired and discussed in Section 2.7, however, with the use of computers to identify

the KAM solution, it remains possible.

An initial estimate of the expected frequencies was completed using the equations

given in Section 2.5.

In the ECEF reference frame each position coordinate was analyzed independently.
A FFT was completed on the x, y, and z position vectors. With L defined as the length
of the FFT vector, ¢, and a nyquist frequency, n = 0.5, the frequency is calculated over
the interval [1:0.5L] as Libn. The power corresponding to these frequencies is given by

|#|2. The power and frequency are plotted. A log scale is used for the power axis and

the frequencies are in orbits/15minutes because that is the time scale of data in the final

orbit file.

3.3 Computing Velocities from Broadcast Ephemeris Data

Building on the calculations in the GPS ICD-200 [ARINC Research Corporation,
April 2000] receiver interface, it is possible to calculate the satellite velocity in the ECEF
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coordinate frame. The details of these calculations are provided by Remondi [Remondi,
2004a/, including an example C code available on the web [Remondi, 2004b]. The satel-
lite velocities were calculated using two methods to validate the code. This code was
converted into Matlab code and validated with the sample file given by Remondi. The
code is included in the Appendix.

3.4 Sidereal Time

Until this point all calculations have been completed in the ECEF reference frame
and times have been converted to Julian dates for compact representation of the date
and time. In order to convert the ECEF values into the Earth Centered Inertial (ECI)
reference frame, GPS time must be converted to UTC time. Section 2.1 describes the
time difference between these systems. In Julian date format, this is equivalent to adding
.0016 to the GPS Julian date to obtain a UTC Julian date. The United States Naval
Observatory (USNO) provides the formulas needed to calculate the Greenwich Apparent
Sidereal Time angle (GAST) based on a Julian date [USNO, 2008]. This angle is the
rotation between the ECEF frame and the ECI frame. This method will give results
on the order of 1077 radians. Precise GPS data has an accuracy on the order of 10~°
radians. Calculating GPS satellite dynamics to this level of accuracy in the ECI frame
based on precise data would require use of the Multiyear Interactive Computer Almanac

[USNO, 2006].

3.5 Integrated Orbit Frequency Set

A hypothetical GPS satellite data point was developed using basic satellite dynam-
ics. This was developed using an ideal satellite with ¢ = 55°, e = 0, and a = 26,560
km. The ECEF and ECI reference frames were assumed to be aligned at the moment of

interest with the satellite on the x axis at the ascending node.

For a satellite in a circular orbit the velocity tangent to the orbit is given by
Equation 3.1
(3.1)

_ M
v = —
a
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Values were converted to canonical units for the analysis. Canonical units of Dis-
tance Unit (DU) and Time Units (TU) are defined where 1 DU = 6378.135 km (radius
of the earth) and 1 TU = 13.44686457 min. The GPS satellite position and velocity
have been input into a numerical integration based orbit propagator. The orbit data

generated was fit with a FFT to identify the frequencies.

3.6 Laskar Frequency Fitting

The integrated orbit created and frequencies identified in Section 3.5 are refined
using the Laskar frequency fitting algorithm to get better resolution. In practice, this can
be a relatively time consuming process to achieve convergence; therefore, it is important
to have approximate frequencies to several significant digits as identified through an

ordinary FFT.
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IV. Results and Discussion

This chapter shows there are discrete frequencies for most GPS satellites. Some of the
older satellites are in semi-stable orbits. Satellites in each orbital plane, for the most

part, have the same orbital frequencies.

4.1 Frequency Estimates

Initial frequency estimates were calculated using the frequency equations in Section
2.5 based on the orbital elements. These estimates used the following values for Earth
constants: pg = 3.986012e5 km?3/s*, Ry = 6378.145 km, J, = 0.00182, and wg =
7.292115856e — 5 rad/s. GPS orbit values of e = 0.0032, a = 26560.62369 km, and i =

55° were used in the calculations. The estimated frequencies are therefore:

d

wy = 1.4585¢ — 4 2€
SsecC

d

wy = 7.2920¢ — 5 €
sec

vy = —4.4020 — 9 24
sec

For comparison with the results in later sections, these frequencies are also equivalent

to:
orbits rad
= 2.0892¢ — 2 =1.1 -1 —
w1 0892¢ Tomin 767e O
orbits rad
= 1.0446¢ — 2 = 5.8840e — 2 —
Wo 0446e 5min 5.8840e TU
orbits rad
= —6.3054e — 7 = —3.5516e — 6 —
ws ©~ ! T5min ‘7 TU

The mean motion for a GPS satellite using Equation 2.27 and the ideal value of a =
26560 km gives n = 1.458569725e-4 rad/sec. This is equivalent to w; (with the exception
of the J which is small). It is expected that the frequencies in the z coordinate will
therefore be multiples of w;. Calculation of the period of the torus using Equation 2.29
gives a value on the order of 19 years for a GPS satellite to traverse the entire KAM

torus of it’s orbit.
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4.2 Position Frequencies

FFTs were completed independently on each of the ECEF coordinate positions.
Of the 26 satellites analyzed that were in operation during 2007, 25 had stable frequency
mappings. The remaining satellite shows a semi-stable frequency map. Because the
frequencies can be written in terms of the orbital elements, independent of right as-
censions, as shown in Section 2.5, it is expected that all satellites will have identical

frequency maps.

The graphs in Figure 4.1 show the x, y, and z position frequencies of a satellite in
the A orbital plane.

GPS A Orbital Plane: PRN = 08

# position
] T T T T T

LA U'%QU:KH 031422 _
P 0, = 0052312 |
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0 0.0s 0.1 015 02 028 03 035 04 0.45 o0s
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Figure 4.1:  Frequencies of positions for PRN 08 located in the A orbital plane

Peak analysis of this plot identifies the frequencies for each axis as shown in Table
4.1. The x and y coordinates have the same frequency values to the order shown in this

analysis. This is likely due to the symmetry of the orbit relative to these axes.

All the orbital planes have very close or identical orbital frequencies. This is ex-
pected since the orbits in each of the planes are identical, with the exception of the
RAAN. As discussed earlier, the frequencies do not depend on the RAAN. The graphs
below show the results in each of the remaining five orbital planes. The frequency graphs

for all of the satellites in operation during 2007 are in the Appendix for reference.
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Table 4.1:

Precise Satellite Orbit Frequencies, PRN 08

: orbits :
Coordinate | Frequency :>* | Identity
X 0.010531 Wy
y 0.010531 W
z 0.020948 w1
X 0.031422 w1 + wa
y 0.031422 w1 + wo
zZ 0.041838 2wy
X 0.052312 wy + 2wy
y 0.052312 wa + 2wy
Z 0.062729 3wy
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GPS C Orbital Plane: PRN =03
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Figure 4.3:  Frequencies of positions for PRN 03 located in the C orbital plane

GPS D Orbital Plane: PRN =11
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Figure 4.4:  Frequencies of positions for PRN 11 located in the D orbital plane
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GPS E Orbital Plane: PRN = 20

# position
w” T T T T
s o, = 0.010531
= 10" , = 0.031422 il
=l
5
z
& " 0, = 0052255 il
I | 1 I I | I | | I
o 0.0s 01 015 02 025 03 035 04 0.45 os
Freguency (orbits/15min)
¥ position
i . .

o, =0.010531
o, = 0.031422

= 0.052255

1 I I I I | I I I I
1} 0.0s 01 015 02 025 03 0.35 04 0.45 os
Frequency (orbits/15min)
Z position
20
i T T T T
v, = 0.020343
15
=10 ~
=
g 0.041838
W, =
£ " 2 ol
= 0.062729
I I I I I I I I I I

0 0.0s 01 018 02 028 03 035 04 0.45 0s
Frequency (orbits/15min)

Figure 4.5:  Frequencies of positions for PRN 20 located in the E orbital plane

GPS F Orbital Plane: PRN =13
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Figure 4.6:  Frequencies of positions for PRN 13 located in the E orbital plane
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The frequencies show some inconsistencies. In Figures 4.3 and 4.4, the third fre-
quency in each of the x and y axes are not identical. Table 4.1 has all of the frequencies
for each axis as shown in Figure 4.1 and includes the approximate identities relating each
of the frequencies. The frequencies are almost multiples of each other but have some er-
ror. By direct calculation 2w; = 0.041896 rather than 0.041838 as determined with the
Fourier transformation. Similarly, by direct calculation w; 4+ ws = 0.031479 rather than
0.031422 as determined with the Fourier transformation. ws does not appear in any of
the frequencies. Because the orbit is near circular, the apsidial regression rate is almost
zero. In each of the graphs, the first frequency in the z coordinate bisects the first two
frequencies in the x and y coordinates. The resonance between the orbital period and
the rotation rate of the Earth results in wy = 2w;. GPS satellites orbit the earth once
every 12 hours and the Earth completes one revolution every 24 hours. This coupling
essentially causes us to loose a frequency since w; and ws are multiples of each other

rather than discrete unique frequencies.

The difference in results for the frequencies may be explained by the presence of
other small magnitude frequencies that did not directly show up in the analysis. Though
small, w3 may be buried in the results. Because this analysis was completed on actual
satellite data, it is possible that the sun or moon may be affecting the orbits slightly.
These interactions could be represented with their own small frequencies that are not

readily apparent.

The oldest satellite currently in operation is PRN 25, located in the A orbital plane.
It was launched in 1992. Analysis of this satellite produced interesting results. Figure

4.7 shows that the satellite is semi-stable.

Although PRN 25 shows distinct frequencies, it has noise between the frequencies.
The frequencies are also shifted compared to those of all the other GPS satellites ana-
lyzed. PRN 25 corresponds to SVN 25 and it is the only satellite in the constellation with
only three reaction wheels. To correct for this, regular momentum dumps are completed.
These momentum dumps are very short duration small pulses (with order of magnitude
comparable to a “mouse fart”). [Bordner, 2008] These brief changes in velocity are

enough to influence the analysis. This reinforces the conditions for the KAM theory that
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GPS A Orbital Plane: PRN =25
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all perturbations must be small and smooth. PRN 25 experiences small perturbations,
but the burns by nature are not smooth changes. This satellite could still be modeled
with a Fourier series representing the torus, but it is likely there would be greater error

in the location predictions.

4.3 Integrated Orbital Frequencies

A numerical integration of the Hamiltian given in Section 2.3 using EGM 96 to
order and degree n,m j 20 was completed for a GPS satellite. The following values were
used to begin the integration: x = 4.1642 DU, y = 0 DU, z = 0 DU in the ECEF frame
and x =0 DU/TU, y = 0.2811 DU/TU, 7z = 0.4014 DU/TU in the ECI frame. These are
based on an ideal satellite with e=0, 1=55°, and a=26,560 km. The integration begins
at the moment in time when the ECEF and ECI reference frames are aligned and the
satellite is at the ascending node with RAAN = 0°. Figure 4.8 shows the error in the
Hamiltonian over the course of the integration. The satellite orbit was integrated for

19,560 TU, which is approximately six months.

Figure 4.9 shows the frequencies identified for the numerically integrated orbit.
The same patterns and approximate frequencies shown by the precise orbits also appear
with the numerically integrated orbit. The frequencies for the precise orbits are given in
orbits/15min, while the numerically integrated results are in canonical units of rad /TU.
A simple conversion between these units shows the frequencies are the same and also
correspond to the initial estimates in Section 4.1. Figure 4.10 shows the detail of the

higher order frequencies for the numerically integrated orbit.

4.4 Laskar Frequency Fit

Using the Laskar frequency fitting algorithm described in Section 2.6, the orbital
frequencies of the numerically integrated orbit are found to double precision. Table 4.2

details all the frequencies for each axis and the approximate identities they represent.

The frequencies identified with the Laskar frequency algorithm show the same
patterns and interesting results found with the frequency fit of the precise orbit data.

The x and y axis frequencies are close but do not match beyond two to six decimal places.
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Figure 4.8:

Numerically Integrated Orbital Frequencies using Laskar Frequency Fitting

Coordinate | Frequency % Identity
X 5.885905920973412¢-2 | wy

y 5.885907961866142¢-2 | wy

z 1.17698982359873e-1 | wy

X 1.75444154860682e-1 | wy + wo

y 1.75115819066544e-1 | wy + wo

z 2.35399935912444e-1 | 2w,

X 2.94232047488148e-1 | wy + 2w,
y 2.91853937261849¢e-1 | wy + 2w,
z 3.53097100563892e-1 | 3w,

30

Hamiltonian Error of Numerically Integrated Orbit




Power

10000

GPS Satellite (in ECEF frame)

Kt

0.1 02 03 04 05 06

Frequencies (rad/TU)

Figure 4.9:  Frequencies of Integrated Orbit, 0-0.6 rad/TU

31




Power

GPS Satellite (in ECEF frame)

Hxt'

Yxt'

Zaxt'

02

025 03 035

Frequencies (rad/TU)

0.4

Figure 4.10:

Frequencies of Integrated Orbit, 0.2-0.4 rad/TU

32




Furthermore, the identities are not exactly represented in the frequencies beyond three

to five decimal places.

The difference in results for the frequencies may be explained by the presence of
other small magnitude frequencies that did not directly show up in the analysis. As
discussed in Section 4.2, w3z, though small, may be buried in the results. Other errors
may be a result of errors in the numerical integration or in the fitting process. Although
the integration was run for six months, it does not represent motion throughout the
entire torus. This may require that the integration to be run for a longer time period
which would allow the Laskar algorithm to sample the entire torus in the frequency

fitting process.
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V. Conclusions

Chapter IV shows promising but inconclusive results. Further analysis is required to
understand the inconsistencies in the data and ultimately to prove that KAM theory
can accurately model actual satellite motion. To verify accuracy, the KAM tori should
be used to predict future satellite positions and these positions should be compared to
the actual positions. More advanced studies may look at the actual application of KAM
theory to aid in challenging problems such as formation flying of satellites or rapidly

reacquiring “lost” objects.

5.1 Recommendations for Further Study

First and foremost, the frequencies should be evaluated to understand the incon-

sistencies.

Once the frequencies are understood and accurately determined, the coefficients of
the model should be fit using a linear least squares fitting. This complete equation can
be used to predict future satellite locations. At a future time, these predicted locations
can be compared to actual satellite positions to determine the error in the KAM tori

model of the satellite orbit.

Two studies should be completed to understand the trade offs between numerical
integration and KAM tori for predicting satellite orbits. First, since the Laskar frequency
fitting algorithm is computationally intensive and time consuming to implement, there
is little benefit to finding a KAM torus for an orbit if only a short period of time is
required. For example, with the space shuttle it would be more beneficial to do a numer-
ical integration. The Laskar frequency fitting for a KAM torus is a one time calculation.
Once it is complete the computational and time requirements are minimal. Using a
KAM torus to represent debris orbits over long periods of time would be beneficial. A
study evaluating the cumulative computational and time requirements for a numerical
integration versus a KAM tori fitting with prediction would give guidelines as to when
each method should be used. A second study evaluating the effects of air drag on the
KAM location predictions would give guidelines as to the minimum altitude for KAM

tori to be applied. The Hamiltonian only includes the gravitational perturbation to the
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satellite orbit. As a satellite’s altitude decreases, air drag perturbations increase. KAM
tori have been applied to low altitude satellites successfully. However, it is possible that
for satellites in very low altitude orbits the perturbations from drag would be too great

to apply KAM theory.

5.2 Application of KAM to Earth Orbiting Satellites

There are several situations where the application of KAM tori could be beneficial
to the operation of Earth orbiting satellites. Specifying a KAM torus for a given orbit, a
satellite’s position is known at any point in the future, up to a limit which will need to be
determined. This valid time limit will likely be on the order of months, since the torus
is fit based on months of data. An orbit model that can directly calculate a satellite
orbit at any point in time is extremely valuable. Once the KAM torus is identified there
will be lower computational requirements for determining the position of a satellite and
especially for determining multiple satellite locations simultaneously. Another benefit
of this method would be that almanacs and broadcast ephemeris such as those used by

GPS would be valid for longer periods of time.

Two satellites that are on the same or related tori remain in the same relative
position to each other. This method could be used to set up formation flying of satellites

instead of using the Clohessy-Wilshire equations.

In the case of an orbit that experiences a sudden change of trajectory, KAM theory
could be applied up to the impulse. Keplarian calculations could then be used to calculate
the orbit following the impulse. Subsequently, the orbital elements from the Keplarian
solution could be used to estimate the frequencies of the new orbit. These may be able
to be used to predict the approximate satellite location, thus allowing tracking systems

to reacquire the “lost” object.
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Appendiz A. Constants and GPS Data

A.1 GPS Parameter Summary and Constants

[Misra and Enge, 2001]

Table A.1:  GPS Constellation Parameters

Parameter Nominal Value Tolerance
a 26,560 km +/- 50 km
e less than 0.02 n/a

i 55 deg +/- 3 deg
Period 11 hr 58 min

Operational Satellites | 24 +8

Planes 6 n/a
RAAN spacing 60 deg at equator | n/a
Satellites per plane 4 +1
Inter-satellite spacing | 2@30-32.1deg

A.2 FEarth Constants

[Bate et al., 1971]

Table A.2:  Geocentric Constants

Geocentric Parameter Canonical Units | Metric Units
Mean Equatorial Radius, o | 1 DU 6378.145 km
Time Unit 1TU 806.8118744 sec
Speed Unit 1 20 7.90536828
Gravitational Parameter, pg | 1 ?gs 3.986012e5 ];;”62
Angular Rotation, wg 10588336565 244 | 7.292115856e-5 =24
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Appendiz B. 2007 GPS Constellation Frequencies

The following graphs are of the frequency and power of the orbits in each of the ECEF
coordinates. The graphs represent all of the satellites that were in operation for all of

2007. The frequency analysis was done for January through June.
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GPS A Orbital Plane: PRN =08
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Figure B.2:  Frequencies of positions for PRN 08 located in the A orbital plane
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GPS A Orbital Plane: PRN =25
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Figure B.4:  Frequencies of positions for PRN 25 located in the A orbital plane
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GPS B Orbital Plane: PRN =16
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GPS B Orbital Plane: PRI =12
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GPS B Orbital Plane: PRN =28
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GPS B Orbital Plane: PRN =30
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Figure B.10:  Frequencies of positions for PRN 30 located in the B orbital plane
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Figure B.11:  Frequencies of positions for PRN 03 located in the C orbital plane
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GPS C Orbital Plane: PRN =06

X position
2
10 T T T T
| 10, =0010531
=10 0, =0.031422 _
=
5
H
[ Ti 0, = 0.052255 A
1° I 1 1 I | 1 I 1 1
0 0.05 0.1 015 0.2 0.25 03 0.3 0.4 0.45 05
Frequency (arbits/ Smin)
Y position
2
1o T T T T
| 10, =0010531
=1 0, =0.031422 _
=
z
£ g0 0, = 0052285 =
i | | 1 | | 1 | | 1
0 0.05 0.1 015 0.2 0.25 03 0.3 0.4 0.45 05
Frequency (arbits/15min)
7 position
20
1o T T T T T
o, = 0020948
15
= 10"} B
g ©,= 0041838
° 10
& 10" o
=0.062729
1 | I 1 | | 1 I 1 1

0 0.06 0.1 015 02 025 03 0.3 04 045 05
Frequency (arbits/15min}

Figure B.12:  Frequencies of positions for PRN 06 located in the C orbital plane

GP3 C Orbital Plane: PRM =17
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Figure B.13:  Frequencies of positions for PRN 17 located in the C orbital plane
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GPS C Orbital Plane: PRN =13
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Figure B.14:  Frequencies of positions for PRN 19 located in the C orbital plane
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Figure B.15:  Frequencies of positions for PRN 11 located in the D orbital plane
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GPS D Orbital Plane: PRN =02
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Figure B.16:  Frequencies of positions for PRN 02 located in the D orbital plane
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Figure B.17:  Frequencies of positions for PRN 04 located in the D orbital plane
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GPS D Orbital Plane: PRN =21
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Figure B.18:  Frequencies of positions for PRN 21 located in the D orbital plane
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Figure B.19:  Frequencies of positions for PRN 20 located in the E orbital plane
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Figure B.20:  Frequencies of positions for PRN 18 located in the E orbital plane
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Figure B.21:  Frequencies of positions for PRN 22 located in the E orbital plane
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Figure B.22:  Frequencies of positions for PRN 13 located in the F orbital plane
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Figure B.23:  Frequencies of positions for PRN 01 located in the F orbital plane
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GP& F Orhital Plane: PRN =26
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Figure B.26:  Frequencies of positions for PRN 26 located in the F orbital plane
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Appendiz C. Data Analysis Code

The following code files were written in Matlab version 2007b for analysis of the pre-
cise satellite orbit data. Dr William Wiesel has developed Fortran 90 code to do the

numerically integrated orbit and the frequency identification of this orbit.

C.1 Main Data Analysis File

Listing C.1:  Main Data Analysis File

%Capt Rachel Derbis
%Main Thesis Script
%Version 7.2

%This script will take precise matlab orbits and calculate the
orbital
hfrequencies

%»This work is based on the KAM theory.

%A1l position and velocity values are in the earth centered earth
fixed

%(rotating) reference frame unless otherwise notes as the earth
centered

hinertial frame

%clear matlab to start new session
clear

clc

format long e

%“Constants for Earth(from Fundamentals of Astrodynamics p429)
%Metric Units

mu = 3.986012e5; Y Gravitational Parameter (km~3/sec”2)
Re = 6378.145; YMean Equatorial Radius (km)

omega = 7.292115856e-5; YAngular Rotaton (rad/sec)

tu = 806.8118744; Y%Time Unit (sec)

su = 7.90536828; JSpeed Unit (km/sec)

%Canonical Units

mu_c = 1; %Gravitational Parameter (DU"3/TU"2)

Re_c = 1; %Mean Equatorial Radius (DU)

omega_c = .0588336565; JAngular Rotaton (rad/TU)

tu_c = 1; %Time Unit (TU)

su_c = 1; %Speed Unit (DU/TU)

%Select PRN of interest (this is the satellite considered)

%PRNs listed are for satellites fully operational for ALL of 2007
%A orbital plane includes: 25,27,09,08,31

%B orbital plane includes: 05,30,28,16,12

%C orbital plane includes: 06,03,19,17

%D orbital plane includes: 04,11,21,02

%E orbital plane includes: 20,18,22

%F orbital plane includes: 26,01,13,14,23
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%set the number for the satellite grouping to analyze
%(this should be the only change between runs unless you have

already
%sorted the data and only are doing analysis, then comment the code
noted)
setnum = 1; Y%value between 1 and 5;
45 Jfirst set of satellites produced interesting results, try other
sets
%notice if there is not a satellite to be analyzed in a plane for a
set
%then PRN = 00, this will produce messages stating this and dummy
outputs
if setnum ==1;
PRNa = 25;
50 PRNb = 16;
PRNc = 03;
PRNd = 02;
PRNe = 20;
PRNf = 13;
55 elseif setnum ==2;
PRNa = 31;
PRNb = 12;
PRNc = 17;
PRNd = 11;
60 PRNe = 18;
PRNf = 01;
elseif setnum ==3;
PRNa = 27;
PRNb = 28;
65 PRNc = 06;
PRNd = 21;
PRNe = 22;
PRNf = 26;
elseif setnum ==4;
70 PRNa = 09;
PRNb = 30;
PRNc = 19;
PRNd = 04;
PRNe = 00;
75 PRNf = 14;
elseif setnum ==5;
PRNa = 08;
PRNb = 05;
PRNc = 00;
80 PRNd = 00;
PRNe = 00;
PRNf = 23;

end

85 /%initialize filenames for saving and recalling, based on setnum

filename2 = [’orbit’, num2str (setnum)];
filename4 = [’velocities’, num2str (setnum)];
filename5 = [’canonical’, num2str (setnum)];

90 % *xA*xx*x*x*x**comment out code here if data has been presorted*****x*
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%“Read in the final orbit data(sp3 file)
filenamel = ’nd6Mon.sp3’;
disp ’Building time and position matrices from precise GPS file’
95 %A orbital plane read in data
[xp_a, yp_a, zp_a, time_a] = pos_final (PRNa, filenamel);
disp ’checkpoint A1’
%B orbital plane read in data
[xp_b, yp_b, zp_b, time_b] = pos_final (PRNb, filenamel);
100 disp ’checkpoint B1’
%C orbital plane read in data
[xp_c, yp_c, zp_c, time_c] = pos_final (PRNc, filenamel);
disp ’checkpoint C1°’
%D orbital plane read in data
105 [xp_d, yp_d, zp_d, time_d] = pos_final (PRNd, filenamel);
disp ’checkpoint D1’
%E orbital plane read in data
[xp_e, yp_e, zp_e, time_e] = pos_final (PRNe, filenamel) ;
disp ’checkpoint E1°’
110 %F orbital plane read in data
[xp_f, yp_f, zp_f, time_f] = pos_final (PRNf, filenamel);
disp ’checkpoint F1°’

%save orbit for future use.
115 orbit_a = [xp_a;yp_a;zp_a;time_al;
orbit_b = [xp_b;yp_b;zp_b;time_b];

orbit_c = [xp_c;yp_c;zp_c;time_c];
orbit_d = [xp_d;yp_d;zp_d;time_d];
orbit_e = [xp_e;yp_e;zp_e;time_e];
120 orbit_f = [xp_f;yp_f;zp_f;time_£f];
save (filename2,’orbit_a’,’orbit_b’,’orbit_c’,’orbit_d’,...

’orbit_e’,’orbit_£f’)

%***x* to load existing presorted file begin herex**x*x
125 Jcomment out section of code starting with **A**x above
%**xBxxif files were not sorted above begin comment out this section

w{

if setnum == 1;
load orbitl.mat
130 elseif setnum == 2;
load orbit2.mat
elseif setnum == 3;
load orbit3.mat
elseif setnum == 4;
135 load orbit4.mat
elseif setnum == 5;

load orbitb.mat
end

140 %extract data from orbit file
xp_a = orbit_a(1l,
yp_a = orbit_a(2,

1)
:)

>

zp_a = orbit_a(3,:);
time_a = orbit_a(4,:);
145 xp_b = orbit_b(1,:);
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yp_b = orbit_b(2,:);
zp_b = orbit_b(3,:);
time_b = orbit_b(4,:);
xp_c = orbit_c(1l,:);
150 yp_c = orbit_c(2,:);
zp_c = orbit_c(3,:);
time_c = orbit_c(4,:);
xp_d = orbit_d(1,:);
yp_d = orbit_d(2,:);
155 zp_d = orbit_d(3,:);
time_d = orbit_d(4,:);
xp_e = orbit_e(1,:);
yp_e = orbit_e(2,:);
zp_e = orbit_e(3,:);
160 time_e = orbit_e(4,:);
xp_f = orbit_f(1,:);
yp_f = orbit_f(2,:);
zp_f = orbit_£f(3,:);
time_f = orbit_f(4,:);
165 %}

h**x comment out beginning at **Bx* if data is sorted in this run.
%this is the end of the section that loads existing data

%**x*End of Data input, beginning data analysis

170
%do fast forier transform on each component A orbital plane
disp ’Calculating FFT for each position matrix’
Yax = fft(xp_a);
Yay = fft(yp_a);
175 Yaz = fft(zp_a);
disp ’checkpoint A2’
%do fast forier transform on each component B orbital plane
Ybx = fft (xp_b);
Yby = fft(yp_b);
180 Ybz = fft(zp_b);
disp ’checkpoint B2’
%do fast forier transform on each component C orbital plane
Yex = fft(xp_c);
Ycy = fft(yp_c);
185 Ycz = fft(zp_c);
disp ’checkpoint C2°’
%do fast forier transform on each component D orbital plane
Ydx = fft(xp_d);
Ydy = fft(yp_d);
190 Ydz = fft(zp_d);
disp ’checkpoint D2’
%do fast forier transform on each component E orbital plane
Yex = fft(xp_e);
Yey = fft(yp_e);
195 Yez = fft(zp_e);
disp ’checkpoint E2’
%do fast forier transform on each component F orbital plane
Yfx = fft(xp_£f);
Yfy = fft(yp_f);
200 Yfz = fft(zp_£f);
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disp ’checkpoint F2’

%Plot frequencies for each of the planes
%A orbital plane plot and determine frequencies
205 Plane = ’A’;
PRN = num2str (PRNa, ’%02d4°);
[mFreqax , mFreqay, mFreqaz] = pfplot(Plane,PRN,Yax,Yay,Yaz);
%B orbital plane plot and determine frequencies
Plane = ’B’;
210 PRN = num2str (PRNb,’%024°) ;
[mFregqbx , mFreqby, mFreqbz] = pfplot(Plane,PRN,Ybx,Yby,Ybz);
%C orbital plane plot and determine frequencies
Plane = ’C’;
PRN = num2str (PRNc, ’%02d4°);
215 [mFreqcx, mFreqcy, mFreqcz] = pfplot(Plane ,PRN,Ycx,Ycy,Ycz);
%D orbital plane plot and determine frequencies
Plane = ’D’;
PRN = num2str (PRNd, ’%02d’);
[mFreqdx , mFreqdy, mFreqdz] = pfplot(Plane,PRN,Ydx,Ydy,Ydz);
220 %E orbital plane plot and determine frequencies
Plane = ’E’;
PRN = num2str (PRNe, ’%024°);
[mFreqex , mFreqey, mFreqez] = pfplot(Plane,PRN,Yex,Yey,Yez);
%F orbital plane plot and determine frequencies
225 Plane = ’F’;
PRN = num2str (PRNf,’%024°);
[mFreqfx, mFreqfy, mFreqfz] = pfplot(Plane,PRN,Yfx,Yfy,Yfz);

%**xC**x* this section calculates the velocities from a brdc file
230
%calculate the velocities

filename3 = ’brdc6bmon.07n’;
disp ’Building time and calculated velocity matrices from ephemeris’
[xv_a, yv_a, zv_a, timev_a] = vel_brdc(PRNa, filename3);

235 disp ’checkpoint A3’
[xv_b, yv_b, zv_b, timev_b]
disp ’checkpoint B3’
[xv_c, yv_c, zv_c, timev_c] = vel_brdc(PRNc, filename3);
disp ’checkpoint C3’
240 [xv_d, yv_d, zv_d, timev_d] = vel_brdc(PRNd, filename3);
disp ’checkpoint D3’
[xv_e, yv_e, zv_e, timev_e] = vel_brdc(PRNe, filename3);
disp ’checkpoint E3’
[xv_f, yv_f, zv_f, timev_f] = vel_brdc(PRNf, filename3);
245 disp ’checkpoint F3’

vel_brdc (PRNb, filename3);

%save velocities for future use.
vel_a = [xv_a;yv_a;zv_a;timev_al;

vel_b = [xv_b;yv_b;zv_b;timev_b];
250 vel_c = [xv_c;yv_c;zv_c;timev_c];

vel_d = [xv_d;yv_d;zv_d;timev_d];

vel_e = [xv_e;yv_e;zv_e;timev_e];

vel_f = [xv_f;yv_f;zv_f;timev_=£f];

save (filename4,’vel_a’,’vel_b’,’vel_c’,’vel_d’,...
255 ‘vel_e’,’vel_£f7)
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%**x* to load existing presorted / calculated file begin herex**xx
hcomment out section of code starting with **Cx** above
260 % *x*D**xif brdc files were sorted and velocity calculations not made

above
%begin comment out this section
e
if setnum == 1;

load velocitiesl.mat

e
265 elseif setnum == 2;
load velocities2.mat

elseif setnum == 3;
load velocities3.mat
elseif setnum == 4
270 load velocitie
elseif setnum == 5
load velocitie

end

)
s4 .mat

I
sb.mat

275 Yextract data from orbit file

xv_a = vel_a(1l,:);
yv_a = vel_a(2,:);
zv_a = vel_a(3,:);
timev_a = vel_a(4,:);
280 xv_b = vel_b(1,:);
yv_b = vel_b(2,:);

zv_b = vel_b(3,:);
timev_b = vel_b(4,:);

xv_c = vel_c(1,:);
285 yv_c = vel_c(2,:);
zv_c = vel_c(3,:);
timev_c = vel_c(4,:);
xv_d = vel_d(1,:);
yv_d = vel_d(2,:);
290 zv_d = vel_d(3,:);
timev_d = vel_d (4, :);
xv_e = vel_e(1,:);
yv_e = vel_e(2,:);
zv_e = vel_e(3,:);
295 timev_e = vel_e(4,:);
xv_f = vel_f(1,:);
yv_f = vel_£(2,:);
zv_f = vel_f(3,:);
timev_f = vel_f(4,:);
300 %%}

%h**x*kcomment out beginning at **Dx* if velocities are calculated in
this run.
%this is the end of the section that loads existing data

%Build a matrix with position and velocity values matching times
305 % format of time, xp, yp, 2zp, XV, yvV, 2V

disp ’Building matrices of same time position and velocities ECEF’

[d_a]l = compdyn(orbit_a,vel_a);

disp ’checkpoint A4’
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[d_b] = compdyn(orbit_b,vel_b);
310 disp ’checkpoint B4’
[d_c] = compdyn(orbit_c,vel_c);
disp ’checkpoint C4°’
[d_d] = compdyn(orbit_d,vel_d);
disp ’checkpoint D4’
315 [d_e] = compdyn(orbit_e,vel_e);
disp ’checkpoint E4’
[d_f] = compdyn(orbit_f ,vel_f);
disp ’checkpoint F4’
%these dynamics values are in the ECEF frame
320
%compute greenwhich apparent siderial time angle
[theta_g] = GAST(d_a(:,1));
d_a (:,8) = theta_g;
[theta_g] = GAST(d_b(:,1));
325 d_b (:,8) = theta_g;
[theta_g] = GAST(d_c(:,1));
d_c (:,8) = theta_g;
[theta_g] = GAST(d_d(:,1));
d_d (:,8) = theta_g;
330 [theta_g] = GAST(d_e(:,1));
d_e (:,8) = theta_g;
[theta_g] = GAST(d_f(:,1));
d_f (:,8) = theta_g;
disp ’Apparent siderial times calculated’
335
%Calculate the dynamics variables in the ECI frame
hXp, yp, 2Zp, XV, yV, 2ZV
%A orbital plane
d_a(:,9) = cosd(d_a(:,8)).%xd_a(:,2);
340 d_a(:,10) cosd(d_a(:,8)).*xd_a(:,3);
d_a(:,11) = d_a(:,4);
d_a(:,12) = cosd(d_a(:,8)).*%d_a(:,5);
d_a(:,13) = cosd(d_a(:,8)).*%d_a(:,6);
d_a(:,14) d_a(:,7);
345 B orbital plane
d_b(:,9) = cosd(d_b(:,8)).xd_b(:,2);
d_b(:,10) = cosd(d_b(:,8)).*%d_b(:,3);
d_b(:,11) = d_b(:,4);
d_b(:,12) cosd(d_b(:,8)).xd_b(:,5);
350 d_b(:,13) cosd(d_b(:,8)).xd_b(:,6);
d_b(:,14) = d_b(:,7);
%C orbital plane
d_c(:,9) = cosd(d_c(:,8)).*%d_c(:,2);
d_c(:,10) = cosd(d_c(:,8)) .xd_c(:,3);
355 d_c(:,11) = d_c(:,4);
d_c(:,12) cosd(d_c(:,8)).*%d_c(:,5);
d_c(:,13) = cosd(d_c(:,8)).*%d_c(:,6);
d_c(:,14) d_c(:,7);
%D orbital plane
360 d_d(:,9) = cosd(d_d(:,8)).*d_d(:,2);

d_d(:,10) = cosd(d_d(:,8)).*xd_d(:,3);
d_d(:,11) = d_d¢(:,4);
d_d(:,12) = cosd(d_d(:,8)).*d_d(:,5);
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d_d(:,13) cosd(d_d(:,8)).*xd_d(:,6);

365 d_d(:,14) = d_d(:,7);

%E orbital plane

d_e(:,9) = cosd(d_e(:,8)).%xd_e(:,2);
d_e(:,10) = cosd(d_e(:,8)).*%d_e(:,3);
d_e(:,11) d_e(:,4);

370 d_e(:,12) cosd(d_e(:,8)).*%d_e(:,5);
d_e(:,13) = cosd(d_e(:,8)).*%d_e(:,6);
d_e(:,14) = d_e(:,7);

%F orbital plane
d_f(:,9) = cosd(d_£f(:,8)) .xd_f£f(:,2);

375 d_f(:,10) = cosd(d_£f(:,8)).xd_£f(:,3);
d_f(:,11) d_f(:,4);

d_f(:,12) = cosd(d_f(:,8)).*xd_f(:,5);
d_f(:,13) = cosd(d_f(:,8)).xd_f(:,6);
d_f(:,14) = d_£f(:,7);

380 disp ’Dynamics in ECI calculated’
hcalculation of moment values px py pz in ECI frame
%A orbital plane
d_a(:,15) = d_a(:,12) - omega.*d_a(:,10);

385 d_a(:,16) = d_a(:,13) - omega.*d_a(:,9);
d_a(:,17) = d_a(:,14);

%B orbital plane

d_b(:,15) = d_b(:,12) - omega.*d_b(:,10);

d_b(:,16) d_b(:,13) - omega.*xd_b(:,9);
390 d_b(:,17) = d_b(:,14);

%C orbital plane

d_c(:,15) = d_c(:,12) - omega.*d_c(:,10);

d_c(:,16) = d_c(:,13) - omega.*d_c(:,9);

d_c(:,17) = d_c(:,14);

395 %D orbital plane
d_d(:,15) = d_d(:,12) - omega.*d_d(:,10);
d_d(:,16) d_d(:,13) - omega.*d_d(:,9);
d_d(:,17) = d_d(:,14);

%E orbital plane

400 d_e(:,15) = d_e(:,12) - omega.*d_e(:,10);
d_e(:,16) = d_e(:,13) - omega.*d_e(:,9);
d_e(:,17) = d_e(:,14);

%F orbital plane
d_f(:,15) = d_f(:,12) - omega.*d_f(:,10);

405 d_f(:,16) d_f(:,13) - omega.xd_f(:,9);
d_f(:,17) = d_£f(:,14);
hcreate canonical units matrix (will be used in freqident program)
%positions x,y,z in ECEF (TU) and velocities x,y,z in ECI (DU/TU)

410 %A orbital plane

c_a(:,1) = d_a(:,2) .*x(Re_c/Re);
c_a(:,2) = d_a(:,3).*x(Re_c/Re);
c_a(:,3) = d_a(:,4).*x(Re_c/Re);
c_a(:,4) = d_a(:,12) .*x(su_c/su);

415 c_a(:,5) = d_a(:,13) .*(su_c/su);
c_a(:,6) = d_a(:,14) .*x(su_c/su);
%B orbital plane
c_b(:,1) = d_b(:,2).*x(Re_c/Re);
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c_b(:,2)
420 c_b(:,3)

d_b(:,3).¥(Re_c/Re);

d_b(:,4) .*(Re_c/Re);
c_b(:,4) d_b(:,12) .*(su_c/su);
c_b(:,5) d_b(:,13) .*x(su_c/su);
c_b(:,6) = d_b(:,14) .*x(su_c/su);
%C orbital plane

425 c_c(:,1) = d_c(:,2) .x(Re_c/Re);
c_c(:,2) = d_c(:,3).*x(Re_c/Re);
c_c(:,3) = d_c(:,4) .x(Re_c/Re);
c_c(:,4) = d_c(:,12) .*(su_c/su);
c_c(:,5) = d_c(:,13) .%(su_c/su);

430 c_c(:,6) = d_c(:,14) .¥(su_c/su);
%D orbital plane
c_d(:,1) = d_d(:,2).*(Re_c/Re);
c_d(:,2) d_d(:,3).*(Re_c/Re);
c_d(:,3) = d_d(:,4) .x(Re_c/Re);

435 ¢c_d(:,4) = d_d(:,12) .¥(su_c/su);
c_d(:,5) = d_d4(:,13) .*x(su_c/su);
c_d(:,6) = d_d(:,14) .*x(su_c/su);
%E orbital plane
c_e(:,1) = d_e(:,2) .x(Re_c/Re);

440 c_e(:,2) = d_e(:,3) .*x(Re_c/Re);

c_e(:,3) = d_e(:,4) .x(Re_c/Re);
c_e(:,4) = d_e(:,12) .¥(su_c/su);
c_e(:,5) = d_e(:,13) .¥(su_c/su);

c_e(:,6) = d_e(:,14) .x(su_c/su);
445 }F orbital plane
c_f(:,1) = d_f(:,2).x(Re_c/Re);

c_f(:,2) = d_£f(:,3).*x(Re_c/Re);
c_f(:,3) = d_f(:,4).*x(Re_c/Re);
c_f(:,4) = d_£f(:,12) .*(su_c/su);
450 c¢_f(:,5) = d_f(:,13) .%(su_c/su);
c_f(:,6) = d_f(:,14) .¥(su_c/su);

disp ’canonical matrices complete’

save (filename5,’c_a’,’c_b’,’c_c’,’c_d’,...
455 ‘c_e’,’c_f7)

3

hx*xxk*xxx THIS is code from earlier version *k*xx*x
460 orbit = [xp;yp;zpl;

%Plot x,y,z values
surfl (orbit) ;
shading interp
465 colormap (winter) ;
title(’Position of Satellite in Earth Centered Earth Fixed frame’)
xlabel (’x position (km)’)
ylabel(’y position (km)’)
zlabel(’z position (km)’)
470
lx=length(xp); %length of position vectors
hY
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C.2 Function for Getting Positions from Precise Orbit Data (sp3 file)

Listing C.2:  Satellite Positions from Precise Orbit Data

function [xp, yp, zp, time] = pos_final (PRN,
filename)

hi

This function will pull the required data from GPS final \
satellite orbit data (as a combined sp3 file) The inputs are

the filename for the orbit data and the satellite to be analyzed
(PRN). It will out put the date/time information as a juliandate
and the positions x y z

h}
if PRN == 0;

disp ’no satellite identified’
end

%build vehicle identification string
str = num2str (PRN,’%024°) ;
vehID = strcat(’PG’,str); %vehicle ID

%“Read in the final orbit data(sp3 file)
fid = fopen(filename);
if fid == -1;

disp ’error file can not be opened’
end
%determine the file length
first_ch = textscan(fid, ’%s%*["\n]l’);
fclose (fid);
file_len = length(first_ch{1});

%reopen the file and to pull out required data
fid = fopen(filename);

i = 1; %initialize time matrix
j = 1; %initialize position matrices
for n = 1:file_len

tline = fgetl(fid);
%scan file for date time stamp write to file
if tline (1) == %7,

%Yr, Mo, Day, hr, min, sec

yr = str2double(tline (4:7));

mo = str2double(tline(9:10));

day = str2double(tline(12:13));

hr = str2double(tline (15:16));

min str2double(tline (18:19));
str2double (tline (21:31));
date = [yr, mo, day,hr,min,sec];
time (i) = juliandate(date);%date time stamp
%build dummy matrix if no satellite was identified
if PRN == 0;

xp(i) = 1;

yp(i) = 1;

secC
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zp(i) = 1;

end
i=i+1;
%find PRN for the date and time write to file
else if tline(1:4) == vehlID;
%x y z coordinates (km)
xp(j) = str2double(tline(5:18));
yp(j) = str2double(tline (19:32));
zp(j) = str2double(tline (33:46));
j=j+1;
else
end
end
end

fclose(fid)

%icheck vector lengths
1x = length(xp); %x y z will all have the same length
1t = length(time);

if 1x "= 1t;

disp ’error vectors are not the same length’
end
end

C.3 Function for Calculating Velocities Based on Broadcast Ephemeris

Data (07n file)

Listing C.3:  Calculation of Velocities Based on Broadcast Ephemeris Data

function [xv, yv, zv, time] = vel_brdc(PRN, filename)

hi
This function will calculate the required data from GPS broadcast
ephemeris

files. The inputs are the satellite to be analyzed (PRN) and the file...

of the

broadcast ephemeris data. It will out put the date/time information
as a

juliandate and the velocities x y z

¥

%This code is based on C code by Benjamin W Remondi
hreference ICD-200

format long e

“constants

mu = 3.986005e14; %m~3/s"2
omega_e = 7.2921151467e-5; Yrad/s
%set string for satellite

if PRN <=9 ;
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str = [’ ?,num2str (PRN,’%2.04°)];
else

str
end

num2str (PRN, ’%2d’) ;

mil = num2str (20); Y%century

%“Read in the broadcast ephemeris data(07n file)
fid = fopen(filename);
if fid == -1;
disp ’error file can not be opened’
end
%determine the file length
first_ch = textscan(fid, ’%s%*x["\nl’);
fclose(fid);
file_len = length(first_ch{1})+1000;

%reopen the file and to pull out required data
fid = fopen(filename);

i = 1; %initialize matrices
for n = 1:file_len %480
tline = fgetl(fid); %line 1 of data set
%scan file PRN value
if length(tline) > 1 && strcmp(tline(1:2),str)==1;
%Yr, Mo, Day, hr, min, sec
yrstr = strcat(mil,tline (4:5));
yr = str2double(yrstr);
mo = str2double(tline(7:8));
day = str2double(tline(10:11));
hr = str2double(tline(13:14));
min = str2double(tline (16:17));
sec = str2double(tline (19:22));
date = [yr, mo, day,hr,min,sec];
time (i) = juliandate(date);%date time stamp
%line 2 of data set
tline = fgetl(£fid);
%amlitude of the sine harmonic correction term to orbit
radius
crs(i) = str2double(tline(23:41)); %meters
%mean motion difference from computed value
delta_n (i) = str2double(tline(42:60)); %rad/sec
%mean anomaly at reference time
mO0(i) = str2double(tline(61:79)); %rad
%line 3 of data set
tline = fgetl(fid);
%amlitude of the cosine harmonic correcyin term to Argument
of
%Latitude
cuc(i) = str2double(tline(4:22)); %rad
heccentricity
e(i) = str2double(tline(23:41));
%amlitude of the sine harmonic correction term to Argument
of
%Latitude
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cus (i) = str2double(tline(42:60)); Y%rad
%square root of semi-major axis
75 roota(i) = str2double(tline(61:79)); %sqrt(m)
%line 4 of data set
tline = fgetl(£fid);
%time of epoch
toe(i) = str2double(tline(4:22)); %GPS wk sec
80 %amlitude of the cosine harmonic correction term to
inclination
cic(i) = str2double(tline(23:41)); Y%rad
%lobgitude of the ascending node of orbital plane at weekly
epoch
bigomega0(i) = str2double(tline (42:60)); Yrad
%amlitude of the sine harmonic correction term to
inclination
85 cis(i) = str2double(tline(61:79)); Y%rad
%line 5 of data set
tline = fgetl(fid);
%inclination angle at reference time
i0(i) = str2double(tline(4:22)); Y%rad
90 %amlitude of the cosine harmonic correction term to orbit
radius
crc(i) = str2double(tline(23:41)); %meters
harguement of perigee
smallomega (i) = str2double(tline (42:60)); %rad
%Rate of right ascension
95 bigomegadot (i) = str2double(tline(61:79)); %rad/sec
%line 6 of data set
tline = fgetl(fid);
%rate of inclination angle
idot (i) = str2double(tline(4:22)); Y%rad
100 %convert day into day of the year
if mo == 2;
day = day + 31;
elseif mo == ;
day = day + 59;
105 elseif mo == 4;
day = day + 90;
elseif mo == 5;
day = day + 120;
elseif mo == 6;
110 day = day + 151;
elseif mo == 7;
day = day + 181;
elseif mo == ;
day = day + 212;
115 elseif mo == 9;
day = day + 243;
elseif mo == 10;
day = day + 273;
elseif mo == 11;
120 day = day + 304;
elseif mo == 12;
day = day + 334;
end
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%calculation of GPS week second for given time

125 if day <= 6
daysec = day*24*x60%60;
remainsec = hr*60*60 + min*60 + sec;
wksec = daysec+remainsec;
else
130 day = day + 1;

while day > 7
day = day-7;

end
daysec = (day - 1)*24*60%60;
135 remainsec = hr*60*60 + min*60 + sec;
wksec = daysect+remainsec;
end
t(i) = wksec; %GPS week seconds: time of pos & vel request
i=i+1;
140 end
end

fclose (fid);

“hcreate dummy matrices if no satellite identified

145 if PRN == 0;
disp ’no satellite identified’
crs = ones (1,15000) ;
delta_n = ones (1,15000) ;
mO0 = ones (1,15000) ;

150 cuc = ones (1,15000);

e = ones (1,15000);

cus = ones (1,15000) ;

roota = ones(1,15000) .*xsqrt (26560000) ;
toe = ones(1,15000) ;

155 cic = ones(1,15000) ;
bigomega0 = ones(1,15000) ;
cis = ones (1,15000);
i0 = ones(1,15000) *55;
crc = ones (1,15000);

160 smallomega = omnes(1,15000);
bigomegadot = ones (1,15000);
idot = ones(1,15000) ;

t = ones(1,15000)*1000;
time = ones (1,15000) ;

165 end

%begin calculations

A = roota."2; Y%semi-major axis
170 n0 = sqrt(mu./(A."3)); %computed mean motion (rad/sec)
n = nO+delta_n; Jjcorrected mean motion
tk = t - toe; Jtime from ephemeris reference epoch
mk = mO+(n.*tk); %mean anomaly
mkdot = n;

175 ek = mk;

%keplers equation for eccentric anomaly
for i = 1:10
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ek = mk+e.*sin(ek) ;
180 end

ekdot = mkdot./(1.0-e.*cos(ek));

nu = atan2((sqrt(l-e."2) .xsin(ek)) ,(cos(ek)-e)); ’true anomaly
185 nudot = sin(ek) .*ekdot.*(1.0+e.*cos(nu))./(sin(nu).*(1.0-e.*xcos(ek))...

)
phik = nu+smallomega; ’%arguement of latitude
%second harmonic perturbations
corr_u = cus.*sin(2.*phik) + cuc.*cos (2.xphik); JArgument of
Latitude correction
190 corr_r = crs.*sin(2.*phik) + crc.*cos(2.*xphik); %Radius correction
corr_i = cis.*sin(2.*phik) + cic.*cos(2.*phik); %Inclination

correction

uk = phik + corr_u; Ycorrected arguement of latitude
rk = A.x(1-e.*xcos(ek)) + corr_r; Jcorrected radius
195 ik = i0+idot.*tk + corr_i; Y%corrected inclination
ukdot = nudot+2.*(cus.*cos (2*uk)-cuc.*sin (2*uk)) .*nudot;

rkdot = A.*xe.*sin(ek) .*n./(1-e.*cos(ek))+
2x(crs.*xcos (2*xuk)-crc.*sin(2*uk)) .*nudot;
200 ikdot = idot +(cis.*cos(2*xuk)-cic.*sin(2*xuk)) .*2.*nudot;

%postions in orbital plane
xpk = rk.*cos (uk);
ypk = rk.*sin(uk);
205
xpkdot = rkdot.*cos (uk)-ypk.*ukdot;
ypkdot rkdot .*sin (uk)+ xpk.*ukdot;

hcorrected logitude of the ascending node
210 omegak = bigomega0 + (bigomegadot-omega_e) .*tk - omega_e.*toe;
omegakdot = bigomegadot-omega_e;

%earth-fixed coordinates

xk = xpk.*cos(omegak) - ypk.*sin(omegak) .*cos (ik);
215 yk = xpk.*sin(omegak) + ypk.*cos(omegak) .*cos (ik);

zk = ypk.*sin(ik);

%velocities in m/s
xkdot = (xpkdot-ypk.*cos(ik) .*omegakdot) .*cos (omegak) -
220 (xpk.*omegakdot+ypkdot .*cos (ik) -ypk.*sin(ik) .*ikdot) .*sin(omegak...
)
ykdot = (xpkdot-ypk.*cos(ik).*omegakdot) .*sin(omegak) +
(xpk.*omegakdot+ypkdot .*cos (ik) -ypk.*sin(ik) .*ikdot) .*cos (omegak...
)
zkdot =ypkdot.*sin(ik)+ypk.*cos(ik) .*ikdot;

225 Jvelocities in km/s
xv = xkdot .*0.001;
yv = ykdot.*0.001;
ZV zkdot .*0.001;
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230
%check vector lengths
lxv = length(xv); %x y z will all have the same length
1t = length(time);

if 1lxv "= 1t;

235 disp ’error vectors are not the same length’
end
end

C.4 Function for Plotting the Frequencies and Identifying the Peaks

Listing C.4:  Frequency and Power Plotting
function [mFreqx, mFreqy, mFreqz] = pfplot(Plane, PRN, Yx, Yy, Yz)

hi
This function will plot the power and frequency for the orbital fft
5 %}

hgeneral values and main figure

nyquist = 1/2;

titlestr = [’GPS’,’ ’,Plane,’ Orbital Plane: PRN =’,’ ’ PRN];
10 figure(’Name’,titlestr,’NumberTitle’,’off’)

%X position graph
n = length(¥x);
power_x = abs(¥x(1:(n/2)))."2;
15 freq_x = (1:n/2)/(n/2)*nyquist;
subplot (3,1,1)
semilogy (freq_x ,power_x)
title ({titlestr;’ ’;’X position’})
xlabel (’Frequency (orbits/15min)’)
20 ylabel (’Power |Y(£)|?)
%find peak frequencies

if strcmp(PRN, ’00’) == 1; % dummy if no satellite was identified
hold on;
index = find(power_x == max(power_x));
25 mFreqx = num2str (freq_x(index));
plot (freq_x(index) ,power_x(index),’r.’,’MarkerSize’ ,10);
tstr = [’\omega_1 =’,’ ’,mFreqx];
text (freq_x(index+50) ,power_x (index) ,tstr);
hold off;
30 elseif strcmp(PRN, ’00’) == 0;
hold on;
index = find(power_x == max(power_x(1:400)));
mFreqx = num2str (freq_x(index));
plot (freq_x(index) ,power_x(index),’r.’,’MarkerSize’,10);
35 tstr = [’\omega_1 =’,’ ’ mFreqx];
text (freq_x(index+50) ,power_x(index) ,tstr);
index = find(power_x == max(power_x (400:900)));
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mFreqx2 = num2str (freq_x(index));

plot(freq_x(index) ,power_x(index),’r.’,’MarkerSize’ ,10);
40 tstr = [’\omega_2 =’,’ ’,mFreqx2];

text (freq_x(index+50) ,power_x(index) ,tstr);

index = find(power_x == max(power_x(900:end)));

mFreqx3 = num2str (freq_x(index)) ;

plot(freq_x(index) ,power_x(index),’r.’,’MarkerSize’ ,10);
45 tstr = [’\omega_3 =’,’ ’,mFreqx3];

text (freq_x(index+50) ,power_x (index) ,tstr);

hold off;

end

50
%Y position graph
n = length(Yy);
power_y = abs(Yy(1:(n/2)))."2;
freq_y = (1:n/2)/(n/2)*nyquist;
55 subplot (3,1,2)
semilogy (freq_y ,power_y)
title (’Y position’)
xlabel (’Frequency (orbits/15min)’)
ylabel (’Power |Y(£f)|’)
60 %find peak frequencies

if strcmp(PRN, ’00’) == 1; % dummy if no satellite was identified
hold on;
index = find(power_y == max(power_y));
mFreqy = num2str (freq_y (index));
65 plot(freq_y(index) ,power_y (index),’r.’,’MarkerSize’ ,10);
tstr = [’\omega_1 =’,’ ’,mFreqyl;
text (freq_y (index+50) ,power_y (index) ,tstr);
hold off;
elseif strcmp(PRN, °00’) == 0;
70 hold on;
index = find(power_y == max(power_y(1:400)));
mFreqy = num2str (freq_y (index));
plot (freq_y(index) ,power_y(index),’r.’,’MarkerSize’,10);
tstr = [’\omega_1 =’,’ ’ mFreqy];
75 text (freq_y (index+50) ,power_y (index) ,tstr);
index = find(power_y == max(power_y (400:900)));
mFreqy2 = num2str (freq_y (index));
plot (freq_y(index) ,power_y(index),’r.’,’MarkerSize’ ,10);
tstr = [’\omega_2 =’,’ ’ mFreqy2];
80 text (freq_y (index+50) ,power_y (index) ,tstr);
index = find(power_y == max(power_y (900:end)));
mFreqy3 = num2str (freq_y (index));
plot(freq_y(index) ,power_y(index),’r.’,’MarkerSize’ ,10);
tstr = [’\omega_3 =’,’ ’ ,mFreqy3];
85 text (freq_y (index+50) ,power_y(index) ,tstr);
hold off;
end

%Z position graph

90 n = length(Yz);
power_z = abs(Yz(1:(n/2)))."2;
freq_z = (1:n/2)/(n/2)*nyquist;
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subplot (3,1,3)
semilogy (freq_z ,power_z)
95 title (’Z position’)
xlabel (’Frequency (orbits/15min)’)
ylabel (’Power |Y(£)|?)
%find peak frequencies

if strcmp(PRN, ’00’) == 1; Y dummy if no satellite was identified

100 hold on;
index = find(power_z == max(power_z));
mFreqz = num2str (freq_z (index));
plot(freq_z(index) ,power_z (index),’r.’,’MarkerSize’ ,10);
tstr = [’\omega_1 =’,’ ’,mFreqz];

105 text (freq_z (index+50) ,power_z (index) ,tstr);
hold off;

elseif strcmp(PRN, °00’) == 0;
hold on;
index = find(power_z == max(power_z(1:500)));

110 mFreqz = num2str (freq_z (index));
plot(freq_z(index) ,power_z (index),’r.’,’MarkerSize’ ,10);
tstr = [’\omega_1 =’,’ ’ mFreqz];
text (freq_z (index+50) ,power_z (index) ,tstr);
index = find(power_z == max(power_z (500:1090)));

115 mFreqz2 = num2str (freq_z (index)) ;
plot(freq_z(index) ,power_z (index),’r.’,’MarkerSize’ ,10);
tstr = [’\omega_2 =’,’ ’ ,mFreqz2];
text (freq_z (index+50) ,power_z (index) ,tstr);
index = find(power_z == max(power_z (1090:end)));

120 mFreqz3 = num2str (freq_z (index)) ;
plot(freq_z(index) ,power_z (index),’r.’,’MarkerSize’ ,10);
tstr = [’\omega_3 =’,’ ’,mFreqz3];
text (freq_z (index+50) ,power_z (index) ,tstr);
hold off;

125 end

%display all frequencies
format long e

if strcmp (PRN, ’00°’) == 0;

130 x1 = num2str (mFreqgx);
x2 = num2str (mFreqx2);

x3 = num2str (mFreqx3);

yl = num2str (mFreqy);
y2 = num2str (mFreqy2);

135 y3 = num2str (mFreqy3);
z1 = num2str (mFreqz);
z2 = num2str (mFreqz2);
z3 = num2str (mFreqz3);
display ([Plane,’ Orbital Plane Frequencies are as follows:’]);

140 display ([’x1 =7, x1]);
display ([’x2 =2, x2]);
display ([’x3 =’, x3]);
display ([’y1 =2, y11);
display ([’y2 =2, y21);

145 display ([’y3 =7, y31);
display ([’z1 =’, z1]);
display ([’z2 =2, z2]);
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display ([’z3 =’, z3]);
end
150
end

C.5 Function for Computing the Greenwich Apparent Sidereal Time Angle

Listing C.5:  Greenwich Apparent Sidereal Time Angle
function [theta_gl] = GAST(jd)

%this function will caluculate...

5 % Using the USNO guidlines found at
% http://aa.usno.navy.mil/faq/docs/GAST.php,
% and using the "alternative formula" that can be used with a loss
of
% precision of 0.1 second per century.

10 %The Naval Observatory can display Apparent Sideral Time given an
input
%longitude directly as a comparison:
%http://tycho.usno.navy.mil/sidereal.html

D = jd - 2451545.0;
15 GMST = (18.697374558 + 24.06570982441908.*D) -
24xfloor ((18.697374558 + 24.06570982441908.%D) ./24) ;
%greenwhich mean sidereal time, wrapped to [0 24) hours
omega = 125.04-0.052954.%D;
L = 280.47+0.98565.%D;
20 epsilon = 23.4393-0.0000004.x%D;
deltapsi = -0.000319.*sind(omega) -0.000024.*sind (2*L) ;
eqeq = deltapsi.*cosd(epsilon);
GAST = GMST+eqeq;

25 theta_g = zero22pi(GAST*360/24); ’greenwhich meridian angle, in
degrees

end

C.6 Function for Computing Dynamics

Listing C.6:  Satellite Dynamics Calculations

function [dynamics] = compdyn(orbit,vel)

%This function will compare & combine the dynamics information
avialable

5 %Build a matrix with position and velocity values matching times

%also correct julian date (time) to be based on UTC rather than GPS
%GPS was set to UTC 6 Jan 1980 and does not include leap seconds
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%positon components
xp = orbit(1,:);

yp = orbit(2,:);

zp orbit (3,:);
timep = orbit(4,:);
%velocity components
xv = vel(1,:);

yv = vel(2,:);

zv = vel(3,:);
timev = vel(4,:);
lp = length(timep);
lv = length(timev);

%initialization

i =1;
jo=
k =1;

while i < 1p+1;
while j < 1lv+1;
if timep (i) == timev(j);

dynamics(k,1) = timep(i) + 0.00016;
dynamics (k,2) = xp(i);
dynamics (k,3) = yp(i);
dynamics (k,4) = zp(i);
dynamics (k,5) = xv(j);
dynamics (k,6) = yv(j);
dynamics (k,7) = zv(j);

k = k+1;
i = i+1;
o=

elseif timep(i) > timev(j);

jo= 1

elseif timep(i) < timev(j);

i = i+1;
elseif i >= 1p;

j = 1v+2;

i = i+2;
elseif j >= 1v;

i = 1p+2;

o= 3+

-
|

i+1;
jo= 3+

end

%if no satellite was identified,

create a dummy
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if xp == zp;
display ’no satellite identified’
dynamics = ones (15000,7);

end

end

C.7 Code to Merge Files for Analysis

Code is available on the web to merge precise data files. This code is unable to
be automated and only combines two files at a time. Another problem with the current
code is that it only provides the times of the data, but the merged file does not contain
the satellite data. Because of these limitations a new code was created to combine the

necessary parts of many data files.
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